
Select the right page in Gradescope or we will not grade the question!

Homework 2
Git

Due: Saturday, January 21, 10:00PM (Hard Deadline)

Submission Instructions

Submit this assignment on Gradescope. You may find the free online tool PDFescape helpful to edit and fill out this
PDF. You may also print, handwrite, and scan this assignment.

1 Git’s Chicken and Egg Problem

Git has a (well-deserved) reputation as a tool with a high learning curve. There are several reasons for this. One is
that git has a bad user interface – the commands and flags you use to get things done are frustratingly inconsistent
and simply must be learned over time. The bigger reason, however, is that using git requires having an understanding
of how git works and learning how git works requires having some experience using git. This circular dependency
makes it hard to get started as there is no good way to break in. The best we can do is try to hold your hand as
you get started.

Code Academy and GitHub teamed up to build a nice, online git beginners tool. As you work through the exercises,
pay attention to the explanations of each step at the top of the page, and the “Advice” section at the bottom/bottom-
right of the page. The text introduces several new pieces of git-specific language.

Complete the online course at https://try.github.io. Grab a screenshot of your badge and copy
the URL here. (You will need to sign in or create an account get your badge)

My badge and URL as an example:

https://www.codeschool.com/users/3364599/badges/121

Your badge here

Some other tutorials / resources

There is a lot written on the Internet about how to learn git. Some highlights:

• For a deeper dive into git from the basics to the very advanced, check out Atlassian’s tutorials (Atlassian is
the company behind BitBucket and JIRA).

• For more visual learners, check out this interactive visual learning game – caveat this game simplifies some
things, but I think it’s still a useful tool to learn from. There’s even some low-hanging fruit lying around to
improve this tool.

• A lighter, more humorous “quick-reference” guide and a more, uh, frustrated version (warning: language).

C4CS – W’17 1 / 4 Revision 1.0

https://gradescope.com/courses/5574
https://www.pdfescape.com
https://try.github.io
https://www.codeschool.com/users/3364599/badges/121
https://www.atlassian.com/git/tutorials
http://pcottle.github.io/learnGitBranching/
https://github.com/pcottle/learnGitBranching/issues/201
http://adriansampson.net/blog/git.html
http://ohshitgit.com/

Select the right page in Gradescope or we will not grade the question!

2 Using git in your own projects

This sets up the Winter 2015 EECS 280 P2 as an example. 280 students please don’t get confused!!

0. Install git: sudo apt install git

Using version control well is a habit learned over time. As a first step, for the rest of the term, the first thing you
should do whenever an EECS class assigns you a project is:

1. Create a repository
> mkdir -p eecs280-w15/project2
> cd eecs280-w15/project2
> git init

2. Grab a copy of the spec
> wget 'https://drive.google.com/uc?id=0B4qlH840ZwikRmQtdkRIeTZjODA&export=download' -O spec.pdf

3. Grab any starter code
> wget 'https://drive.google.com/uc?id=0B4qlH840ZwikbkZLS3Z5YTVSeW8&export=download' -O eecs280-w15-p2.tgz
> tar -xf eecs280-w15-p2.tgz
> rm eecs280-w15-p2.tgz

4. Create a blank starter cpp file

> touch p2.cpp

5. Add it all to git and commit it

> git add *
> git status # Check to make sure everything looks right
> git commit

Do this before even beginning to read the spec. Make it a habit.

If you try typing make, you’ll find that this starter code does not compile. The spec has a great tip at the bottom
of page 11 that suggests adding stub functions. (No, you don’t actually need to read this spec)

There are 15 functions we need to stub out. Fortunately, your c4cs staff have saved you some trouble. You should
download our copy of p2.cpp:
> wget 'https://raw.githubusercontent.com/the-alex/c4cs-eecs280/master/p2.cpp' -O p2.cpp

Now try running make. Cool; the project builds. But what changed? Fortunately, git can help us figure this out.

What command will show you the difference between your working directory and already committed
changes?

Now, go ahead and commit the changes to p2.cpp only.

C4CS – W’17 2 / 4 Revision 1.0

Select the right page in Gradescope or we will not grade the question!

You ran git status before committing those changes, right? (Because it’s always a good idea to run git status
all the time). You probably noticed that annoying “Untracked Files” section that lists all of the compiled output the
Makefile made. It doesn’t really make sense to track compiled output in a version control system (it is hard to track
changes on a binary file such as an executable).1 Instead, we would prefer if git would ignore the built output.

Commit a change so that built output is ignored. When you are done, git status should print

On branch master
nothing to commit, working directory clean

Once you have completed all of the steps on the previous page, copy the output of:

> git log -n2 -p | head -n 40

2.1 Preparing for the future

This question summarizes the setup and simple usage loop for git. Make some changes, add them, and commit them.
If you need to delete a file, use git rm file_to_delete instead of just rm. From this moment onward, you
should use git for all of your EECS projects. Seriously. Use it.

Set up git repositories for all of your other EECS projects this term. If you are currently in the middle of a project,
create an initial commit at its exact state right now (even though it is not yet finished / not working).

* * *

Later in the term we will analyze how you have been using git and how you may
improve. It is important that you have at least one non-trivial project (e.g. a class
project) that you have used git to maintain.

* * *
Repositories from group projects are fine. If you use a different version control system (svn, bzr, hg, darcs,
cvs, rcs, ...), choose one project to manage with git instead, it’s worth learning, you will encounter it.

1Some binary files are good to check in though, such as the project specification, which will rarely or never change.

C4CS – W’17 3 / 4 Revision 1.0

Select the right page in Gradescope or we will not grade the question!

3 A little about shells and your environment

Try the following:

The /tmp directory holds temporary files. It's a great place to do some
quick tests or experiments, however it is automatically emptied every time
the machine reboots. This means if your machine crashes, you *will* lose
everything in /tmp.
#
Don't ever put anything you care about in /tmp !!

> mkdir /tmp/throwaway
> cd /tmp/throwaway
> git init
> echo hello > world
> git add world
> git commit

Git automatically opens a text editor for you to enter a commit message.

What text editor did git open for you?

Git is not the only program that will open an editor automatically. If you don’t like the default choice, we can change
it using an environment variable called EDITOR. Try the following:

> echo "it's a small" > world
> git add world
> export EDITOR="emacs -nw"
> git commit

Note: Shells are fussy about spaces, do not put spaces around the = in these commands

What text editor did git open for you?

What does the -nw flag do? (Hint: Try it without -nw)

Perhaps, however, you do not want to change the editor used for every program, but only for git. We can do that
too. Try the following:

> echo "on top of the" > world
> GIT_EDITOR=gedit git commit world

If you set EDITOR and GIT_EDITOR to different values, which takes priority?

Roughly how long did you spend on this assignment?

Some extra things to think about (i.e. not graded): Notice that we used two different approaches for setting environment
variables. In the second example, we set the environment variable in-line, which means it only lasts for the lifetime of that
command. If you run gitcommit again without the GIT_EDITOR= part, git will use the old editor.

In the first case we used the export command, which sets that variable permanently for the lifetime of that shell. If you
make another commit in that shell, git will use the same value of EDITOR. What happens if you open a new terminal? Which
editor gets used?

It would be annoying to manually set EDITOR every time you open a new shell. When bash (the shell program) starts, it
reads the file ~/.bashrc, that is the “hidden file” (leading .) named .bashrc in your home directory (~ is a shortcut to
your home). Try adding export EDITOR="gedit" to your ~/.bashrc file and then make some new commits. Does the
editor in your current shell change? What about if you open a new shell? What if you don’t include the “export”?

C4CS – W’17 4 / 4 Revision 1.0

	Git's Chicken and Egg Problem
	Using git in your own projects
	Preparing for the future

	A little about shells and your environment

