Select the right page in Gradescope or we will not grade the question!

Homework 6
Git 11

Due: Wednesday, October 24th, 11:59PM (Hard Deadline)

Submission Instructions

For this assignment, submit parts 1 and 2 to GitLab and part 3 to Gradescope.

Optional Reading

Git is a purely functional data structure, by Philip Nilsson, from Jayway.
http://www. jayway.com/2013/03/03/git—-is—a-purely-functional-data-structure/

I highly encourage reading this when you have some time to read the article carefully and think deeply about the
material. This article presents an excellent way of thinking about git and how it operates.

1 Evaluating git usage

Earlier this semester, we asked you to use git with at least one project. Now you will set up that project to be
shared with the course staff. Visit https://gitlab.eecs.umich.edu and create a new project named exactly
c4cs—-£18-wk6. Be sure to create this project as Private (not Interal or Public).

Add this new repository as a remote (git remote add ...) to your existing project.
Push the project to this new remote.

In GitLab, grant Reporter permission to tarunsk, amrith, cyanliu, sltries and mmdarden. (Choose
“Members” from the drop-down list from the settings gear in the top samkhanright to manage this permission).

We will run a test script (you can see the grading script here), checking our access to everyone’s repository on
Thursday.

Some key factors we are looking for:

1. Commit length. Not too long for the title of the commit message, and not too short. Also including more
description in the body of the commit message is looked for.

2. Number of commits. Only having one or two commits in a repository doesn’t mean you really used git effectively.
In Homework 2 we asked you to begin using git for some sort of a project. This project should have at least
five commits in it for it to be considered for full credit.

Again, for more insight, check out the script used to grade this homework assignment.

C4CS — F’18 1/6 Revision 1.0

http://www.jayway.com/2013/03/03/git-is-a-purely-functional-data-structure/
https://gitlab.eecs.umich.edu
https://github.com/c4cs/autograders/tree/master/git-II
https://github.com/c4cs/autograders/tree/master/git-II

Select the right page in Gradescope or we will not grade the question!

2 Handling merge conflicts

2.1 Content Conflict

Clone https://gitlab.eecs.umich.edu/cd4cs/cdcs—git—-conflictl.git

This repository has a master branch and a merge_me branch that have diverged. Merge the merge_me branch
into master, resolving the conflict.

When you are done, running bash test.sh should print “Success” and running python main.py should print
something reasonable (if factually inaccurate now, hooray!).

Create a new repository in your GitLab named exactly c4cs—-f18-conflictl. Be sure to create this project as
Private (not Internal or Public).

Push your changes to your new repository. (Note: This will be a different “remote”)

In GitLab, grant Reporter permission to tarunsk, amrith, cyanliu, sltries and mmdarden. (Choose
“Members” from the drop-down list from the settings gear in the top right to manage this permission).

We will run a test script, checking our access to everyone’s repository on Thursday night.
First, clone the repository:

$ git clone https://gitlab.eecs.umich.edu/cd4cs/cdcs—-git-conflictl.git

This brings down the master branch onto our machine and adds c4cs/cd4cs—git—-conflictl as a remote. We
can verify this:

$ git remote -v

origin https://gitlab.eecs.umich.edu/cd4cs/cdcs—git-conflictl.git (fetch)
origin https://gitlab.eecs.umich.edu/c4cs/c4cs—git-conflictl.git (push)
$ git branch

* master

Now we want to merge in the branch merge_me. However, we don’t have this particular branch locally, as is seen
from the git branch command above. It resides on the remote server origin.

$ git merge origin/merge_me
Auto-merging test.sh
CONFLICT (content): Merge conflict in test.sh
Auto-merging main.py
CONFLICT (content): Merge conflict in main.py
Automatic merge failed; fix conflicts and then commit the result.
$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
You have unmerged paths.

(fix conflicts and run "git commit")

Unmerged paths:

(use "git add <file>..." to mark resolution)
both modified: main.py
both modified: test.sh

no changes added to commit (use "git add" and/or "git commit -a")

C4CS - F’18 2/6 Revision 1.0

https://gitlab.eecs.umich.edu/c4cs/c4cs-git-conflict1.git

Select the right page in Gradescope or we will not grade the question!

Let’s have a look at the two files with conflicts. Notice the markers ««« HEAD ==== »»» origin/merge_me.
These are conflict markers. Everything below HEAD is what was in HEAD (which points to the master branch in
our case) before the merge. Everything below the equals and above origin/merge_me was is what was in that

branch.

Important note: The conflict markers are automatically inserted by git but should never be committed.

Git tries its best to merge intelligently, but sometimes if the same areas of a file change it needs a human to reconcile
the differences. This is an example of one such case. The correct solutions for each file are below:

$ cat main.py | nl
37 1if _ _name_ == '__main__ ':
38 print_welcome ()
39 print ('")
40 print ('According to current estimates,
41 time = compute_time(2) # 2 is March
42 print (pretty_print (2, 2016, time))
$ cat test.sh | nl
1 diff <(python main.py) golden.txt

In main.py we wanted to keep the first part of our message from master and the second better estimate from
merge_me. In test.sh, the conflict was resolved by keeping everything from master. You can verify this by

running . /test.sh and seeing the success message.
To complete the merge:

$./test.sh

Success

$ git add test.sh main.py

$ git status

On branch master

Your branch is up-to-date with

All conflicts fixed but you are still merging.
(use "git commit" to conclude merge)

Changes to be committed:
modified: main.py
$ git commit

[master 810c3af] Merge remote-tracking branch

'origin/master’'.

'origin/merge_me'

You’ll notice that test.sh does not appear in the git status. This is because it’s actually identical to the
master branch’s copy. i.e. nothing changed, so there are no changes to be committed for that file.

2.2 File Path Conflict

Repeat the same steps for https://gitlab.eecs.umich.edu/cd4cs/cdcs—git—-conflict2.git

Be sure to read over the commit history so that you are sure that the result of your merge has the right data!

We start out very similar to the previous question.

$ git merge origin/merge_me
CONFLICT (modify/delete):
modified in HEAD.
Automatic merge failed;
$ git status

C4CS — F'18 3/6

sales-march-1st deleted in origin/merge_me and
Version HEAD of sales-march-1st left in tree.
fix conflicts and then commit the result.

Revision 1.0

the diag construction will be done:

https://gitlab.eecs.umich.edu/c4cs/c4cs-git-conflict2.git

Select the right page in Gradescope or we will not grade the question!

On branch master
Your branch is up-to-date with 'origin/master'.
You have unmerged paths.

(fix conflicts and run "git commit")

Changes to be committed:

new file: sales—-2016-03-01
new file: sales-2016-03-02
new file: sales—-2016-03-03

Unmerged paths:
(use "git add/rm <file>..." as appropriate to mark resolution)

deleted by them: sales—march-1st

It appears that sales—-march-1st doesn’t fit the pattern of our other files. Intuition tells us it should probably

be deleted, but we should double check.

command below shows logs from merge_me & describes files changed in each commit

$ git log —-name-status origin/merge_me

commit 0e9flfba2bd00827dad94bc44585ed8b9f2f2c26
Author: Pat Pannuto <pat.pannuto@gmail.com>
Date: Fri Mar 11 10:49:17 2016 -0500

Add March 3rd. Change naming scheme

Using human-friendly names "march 1st" makes it harder than needed

for computers to parse the dates. It will also break the simple
sorting of tools like "1s° once you get to two-digit dates.

Change the naming scheme to parse-friendly, sort-friendly numbers

instead.

sales-2016-03-01
sales-2016-03-02
sales—-2016-03-03
sales—-march-1st
sales—-march-2nd

o o

commit £8e2f6933c9ealf20bdc361934ebedlc55¢c53c40

C4CS —- F'18 4/6

Revision 1.0

Select the right page in Gradescope or we will not grade the question!

commit 302584e32cc72978c6febblbl38d2afd892a7a25
Author: Pat Pannuto <pat.pannuto@gmail.com>
Date: Fri Mar 11 10:52:45 2016 -0500

Update March 1st with real sales data
Replace the placeholder data with the real sales data from March 1lst.
M sales—march-1st

commit 1710cl112b061bbl1d4c43d0366b73a225fe93eb9l
Author: Pat Pannuto <pat.pannuto@gmail.com>
Date: Fri Mar 11 10:14:18 2016 -0500

Add initial sales calculation (note: buggy!)
This is the point in history where the two branches will diverge.

M main.py
A sales—-march-1st

commit b469c96baedd24dfdc33c7aae253a663bd56735e
Author: Pat Pannuto <pat.pannuto@gmail.com>
Date: Fri Mar 11 10:08:56 2016 -0500

Initial commit.

A README .md
A main.py

Interpreting commit messages modified files tells us quite a bit. In £e93eb91, we committed buggy data to the (now
deleted) sales file. We then see that in 892a7a25 we update our file with real data, so master definitely contains
old data. Finally, in £2£2c26 we see why the files were renamed. We can confidently delete sales—-march-1st.

$ git rm sales-march-1st

sales—march-1st: needs merge

rm 'sales—-march-1st'

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

All conflicts fixed but you are still merging.
(use "git commit" to conclude merge)

Changes to be committed:

new file: sales—-2016-03-01
new file: sales-2016-03-02
new file: sales-2016-03-03
deleted: sales—-march-1st

$ git commit
[master £58156c] Merge remote-tracking branch 'origin/merge_me'

C4CS - F’18 5/6 Revision 1.0

Select the right page in Gradescope or we will not grade the question!

3 Markdown

Markdown is a widely used lightweight markup language designed to be easily converted into many common formats
(eg. HTML or pdf). GitHub uses its own specification called GitHub Flavoured Markdown (GFM) for everything
from README docs to pull request comments, so it’s important to know some basic Markdown for if you make
changes in a public repository.

In the spaces given below, write the Github Flavoured Markdown that would produce the following:

1. A level 1 header with the text "HW 6 Markdown"

HW 6 Markdown

2. An inline link to https://c4cs.github.io with the text "C4CS site"

[CACS site] (ttps://cdcs.github.io})

3. An unordered list with 2 items, one in italics and one bold

* xItem 1 (italics) *
* x*Item 2 (bold)*=*

4. A code block with c++ syntax highlighting and this code snippet: int rand() { return 3; }

' cpp
int rand() {
return 3;

}

5. A 2x2 table with the following specifications:
e The first row should be a header row
e The left column should be left aligned
e The right column should be right aligned

| Left-aligned | Right-aligned |

| Contentl | Content?2 | °

C4CS — F’18 6/6 Revision 1.0

https://c4cs.github.io

	Evaluating git usage
	Handling merge conflicts
	Content Conflict
	File Path Conflict

	Markdown

