
Select the right page in Gradescope or we will not grade the question!

Homework 5
Practical Regexes and Synthesis of Rich Commands

Due: Wednesday, October 17th, 11:59PM (Hard Deadline)

Submission Instructions

Submit this assignment on Gradescope. You may find the free online tool PDFescape helpful to edit and fill out this
PDF. You may also print, handwrite, and scan this assignment.

1 Playing with words

By default, Ubuntu ships with a few dictionaries. We can find them in
the /usr/share/dict directory. If we head into that directory, we
can see (wc -l *) that these are not small lists. American English
comes in just shy of 100,000 words.

An interesting file is cracklib-small. This is a word list of
around 50,000 common passwords. We can use the grep util-
ity to search through this file quickly to see if our password is
in the file. For example if my password is “password”, then
grep password cracklib-small tells me that I’ve picked a bad
one, but grep sup3rs3cure cracklib-small tells me that may
be a better choice.

So, why is it called grep? Wikipedia tells us that grep’s name,
“comes from the ed command g/re/p (globally search a regular expres-
sion and print)”. Let’s give that a go eh? Run ed cracklib-small
and try the command g/password/p. Remember that you can quit
by typing q.

Thus far we’ve only used simple regular expressions, namely things
that match the whole string we’re searching for. Regular expressions
can be far more powerful, however.

Try the following commands:

> grep password cracklib-small
> grep pass cracklib-small
> grep ^pass cracklib-small # That's a caret, shift+6
> grep pass$ cracklib-small
> grep ^pass$ cracklib-small
> grep pass^ cracklib-small
> grep '$pass' cracklib-small # Why do we need quotes here?
> grep p.ss cracklib-small
> grep ^..th$ cracklib-small
> # Play with some others of your own design

Aside:
Programs that want to check your spelling will
use the file /usr/share/dict/words. No-
tice, however, that when we type ls in this
directory, the words file shows up in teal, indi-
cating that it’s a symlink. Recall that a sym-
bolic link is a way to make something that
looks like a real file, but is actually just a
pointer to another file.

We can follow this pointer, however, to see
what the actual file is. Type ls -l words
to see what it actually points to, in this
case /etc/dictionaries-common/words.
It turns out that this too is a sym-
link however! If we then type
ls -l /etc/dictionaries-common/words
we see that it points back to
/usr/share/dict/american-english,
which is finally a real file.

These little circles come up some-
times for compatibility reasons. Some
programs expect to find the word
list at /usr/share/dict/words
while other programs expect it at
/etc/dictionaries-common/words.
Using symlinks we can make all of these point
to the same file. We can also easily change
the language used for spellchecking by all
programs simply by changing what the last
symlink points to.

To shortcut this whole operation, we
can use the readlink utility. Try the
command readlink words. Now try
readlink -f words. Does what each of
these commands are doing make sense?

Simple primitives build powerful features.

C4CS – F’18 1 / 6 Revision 1.0

https://gradescope.com/courses/24368
https://www.pdfescape.com
https://en.wikipedia.org/wiki/Grep

Select the right page in Gradescope or we will not grade the question!

What does a carat (ˆ) mean in a regular expression? What does a dollar sign ($) mean in a regular
expression?

They match the beginning and end of a string respsectively. You can think of them as matching invisible
characters before and after the string. There is only one start or end to a string, so while “ˆA” will match
any line starting with “A”, the expression “ˆˆA” does not make sense (match two start-of-line markers?)
and will never match anything.

The ˆ and $ characters are generally referred to as anchors. For those interested, this page goes into
some explanation on how these are handled in implementation.

What does a period (.) mean in a regular expression?

A period matches any character.

Periods do require there to be a character to match (i.e. the string cannot be empty).

Sometimes it’s more interesting to know how many matches there are, rather than the exact matches themselves.
grep provides the -c (count) flag for this case. For example grep -c password cracklib-small tells us
there are 3 lines that have “password” in them, but there are (grep -c pass cracklib-small) 60 lines with
“pass”.

There are 810 lines in cracklib-small that are exactly 3 characters long. Give a command you could
run to learn that number:

grep -c ˆ...$ cracklib-small

A “count” flag is a very common flag and very useful flag shared by many utilities, not just grep.

Groups are another powerful feature. Try

> grep ^p[ao]ss cracklib-small
> grep ^p[aeo]ss cracklib-small
> grep ^p[a-z]ss cracklib-small

There are 766 lines in cracklib-small that are exactly 3 letters long. Give a command you could run
to learn that number:

grep -c ˆ[a-Z][a-Z][a-Z]$ cracklib-small

Command-line tools really start to shine when you string them together. Try running the following command:

> for vowel in a e i o u; do echo -e "$(grep -c ^$vowel cracklib-small) \t $vowel"; done | sort -rn

Try playing around with this command a bit. Remove the flags to sort, remove sort altogether, replace the body
of the for loop (everything between do and the ;) with just echo $vowel.

In plain English, what is this command doing?

It finds all of the entries in cracklib-small that start with a vowel and sorts them by which vowel is most
common.

Try adding “| awk '{print $2}'| nl” to the end of this command, which will really make them
look like a ranking!

If you would like more practice with regular expressions, check out this online tutor. One tricky thing, there are many different “dialects”
of regular expressions. Standard grep is very fast but trades off speed for limited features. The tutor teaches what grep calls “Extended
Regular Expressions”. For example, Lesson 6 teaches quantifiers, grep .z{2} will not work, but grep -E .z{2} will.

C4CS – F’18 2 / 6 Revision 1.0

http://www.regular-expressions.info/anchors.html
http://regexone.com/

Select the right page in Gradescope or we will not grade the question!

We have one more tool we need to learn about before with can get to the grand finale, and that’s uniq. First, run
this command:

> for i in $(seq 20); do echo $(($RANDOM % 5)) >> /tmp/numbers; done
| | |
| | \- this is a built-in bash "variable"
| | try just "echo $RANDOM", what happens?
| |
| \- $((...)) lets us do math in bash, in this
| case we're doing a mod as the range of
| $RANDOM is quite large (0 - 32767)
|
\- seq is a program to print a sequence of numbers. Try just

typing "seq 10", "seq 10 20", and "seq 10 2 20"

You can also use the built-in bash range idiom:
> for i in {1..10}; do echo $i; done
to accomplish the same task, but I find that harder to remember the syntax

Check out the contents of the file /tmp/numbers. Do you understand what that command did? Now try running

uniq /tmp/numbers. What does the uniq command do? Not sure? Try looking at the output side-by-side:1
> diff -y /tmp/numbers <(uniq /tmp/numbers)

The man page for uniq is short and simple. It is a good man page. Try giving it a read and playing with some of
the other options for uniq.

1 The <(...) redirect lets you run a command and use its output for something that expects a file, similar to how $(...) lets
you run a command and use its output as text. It lets you skip creating a temporary file. Otherwise you could run
> uniq /tmp/numbers > /tmp/uniq-output
> diff -y /tmp/numbers /tmp/uniq-output
and the result would be the same.

C4CS – F’18 3 / 6 Revision 1.0

Select the right page in Gradescope or we will not grade the question!

Now, for the hard part: Solving EECS 281 problems in 100 characters or less.
We’re going to combine everything we’ve learned so far to answer some powerful queries. For each question, you
need to come up with a string of commands stuck together with pipes that will return the answer to the question.
The correct answer is also given for each question so that you can check your work.

Hint: While we often use the cat utility to just print the contents of a single file, it’s real purpose is for concatenating multiple
files. How might concatenating files be useful in conjunction with these other utilities?

Hint: The way to approach this problem (and many problems) is to build it up from small pieces. String together two commands
until they give you want you want, then add a third, etc.

There are many ways to do each of these. Here are a handful of approaches taken from submssions.

How many words are in only the british-english word list or the american-english word list but
are not in both? [Answer: 4106 words not in common]
If for some reason there is no british-english file, run sudo apt-get install wbritish

cat british-english american-english | sort | uniq -u | wc -l

cat british-english american-english | sort | uniq -u | grep -c .

grep -c ^. <(uniq -u <(sort <(cat american-english british-english)))

comm -3 <(sort american-english) <(sort british-english) | grep -c ^.

diff british-english american-english | grep -c '[<>]'

How many entries in the easily crackable password list (cracklib-small) are English words (are in
american-english)? [Answer: 40636 words in common]

cat cracklib-small american-english | sort | uniq -d | grep -c .

grep -c ^. <(uniq -d <(sort <(cat american-english cracklib-small)))

comm -12 <(sort american-english) <(sort cracklib-small) | grep -c ^.

Optional Related Readings

Quick and light, I particularly recommend the first one. It’s a good anecdote for software and system design.

More shell, less egg – This is a fun blog story of when even Donald Knuth sometimes gets things wrong.

“Why GNU grep is so fast” – This is a nice example of the importance of efficient algorithm design and how an
implementation can benefit from a deep understanding of the underlying system.

C4CS – F’18 4 / 6 Revision 1.0

http://www.leancrew.com/all-this/2011/12/more-shell-less-egg/
https://en.wikipedia.org/wiki/Donald_Knuth
https://lists.freebsd.org/pipermail/freebsd-current/2010-August/019310.html

Select the right page in Gradescope or we will not grade the question!

2 Pulling Some Pieces Together

Head back to the git repository you created for week 2’s homework.

Week 2’s homework had you blindly run the command

> grep ';' p2.h | grep -v ' *' >> p2.cpp

Now try running

> grep ';' p2.h | grep -v ' *'
> grep ';' p2.h | grep ' *'
> grep ';' p2.h | grep -v ' *' | grep filter
> grep ';' p2.h | grep -v ' *' | grep -v filter

In plain English, dissect the command grep -v ' *' (notice the space)

This searches for any line without "space star" in it.

The * is an escape sequence, like how you have to write \\ to get a backslash or \" to get a quote
character in string.

In this case, it’s escaping asterisk, the regular expression match operator, and tells grep to look for an
actual * character. Without the \, the expression grep ' *' would search for “any number of spacae
characters”.

Notice that this is looking for a pattern with a space and a star. If we had only looked for stars, we would
have lost one function:

list_t filter(list_t list, bool (*fn)(int));

because of the pointer. Now, it’s perfectly reasonable for code to have something like:

list_t example(list_t *list);

which would also have matched the given regex. However that wasn’t an issue here, so that was good
enough. The point here is that for little one-offs like this, you should embrace “good enough”.

(Run make if you haven’t already)

Suppose you wanted to change the insert_list function, so you wanted to find all of the places it’s called. One
approach would be:

> grep insert_list *

which searches all files for the string “insert_list”. Compare that search, however, to

> git grep insert_list

Do you see how the two searches differ?

Does ‘git grep’ search untracked files? How do you know?

It does not search untracked files. We know this because the built output is untracked (ignored files are
untracked), and when we run git grep it does not include the compiled files.

Does ‘git grep’ search new files that have been staged but not committed? What test could you
quickly run to find out?

It does.

Since we’re looking at “git grep insert_list”, let’s test this by creating a simple test file:

echo "This file has insert_list in it" > test_file

C4CS – F’18 5 / 6 Revision 1.0

Select the right page in Gradescope or we will not grade the question!

Run git grep insert_list, it doesn’t match (not surprising, it’s still untracked). Then stage the
new file:

git add test_file

And then run git grep insert_list again. Now it matches, which indicates that git grep does
search staged changes.

C4CS – F’18 6 / 6 Revision 1.0

	Playing with words
	Pulling Some Pieces Together

