Select the right page in Gradescope or we will not grade the question!

Homework 13
Profiling, Linting, and Static Analysis

Due: Wednesday, December 13th, 11:59PM (Hard Deadline)

Submission Instructions

Submit this assignment on Gradescope. You may find the free online tool PDFescape helpful to edit and fill out this
PDF. You may also print, handwrite, and scan this assignment.

Optional Reading

Developer Survey 2017, from Stack Overflow.
https://stackoverflow.com/insights/survey/2017

Some students have asked for some insights into CS in industry. Every year, Stack Overflow does a large survey of
developers. Their writeup caveats the survey a bit, but it’s worth calling out again that this is a self-selecting group
of the 50,000 people who are active or attentive enough to Stack Overflow to see the survey and who are willing
to spend the time to fill it out. The response demographics are not necessarily representative of the industry as a
whole, nor should you feel obligated to fall into the bins that the survey identifies. That said, I think it presents
some interesting data. They’ve been doing this for a few years now and looking over the history is interesting as
well.

C4CS - F’17 1/3 Revision 1.0

https://gradescope.com/courses/9999
https://www.pdfescape.com
https://stackoverflow.com/insights/survey/2017

Select the right page in Gradescope or we will not grade the question!

1 Exploring Profiling'

Clone a copy of https://gitlab.eecs.umich.edu/ppannuto/cdcs-fl6-profiling.

Look through main.c to understand what this program is doing (not much, a “nop” is “no-operation”, that is, sit
idle for a cycle). The call graph of this program is about:

\-- main
\-— parent
\-- childl
\-— child2,child2,child2, ...
\-— no_children

When run, this program will execute 16+LONG_TIME nop instructions. By analyzing the code, what percentage of
nop’s should be attributed to each function? Finish filling in the first column of this table:

nop Analysis || Profile 1 Profile 2 Profile 3

main: 0% % % %
parent: 6.25% % % %
child1: % % % %
child2: % % % %

% % % %

no_ children:

Now compile and profile the code 3 times, recording the percentage of time attributed by perf to each function.

Fill in the remaining three columns of the table with the results from these profiling runs.

Does the trend of time attributed to each function align with your expectations from the nop analysis?
(Yes or No)

Give one reasonable explanation for why you think the measured percentages from profiling don’t
perfectly match the nop analysis:

1.1 Call-Graph Profiling

Try running perf record -g ./main && perf report -g

The —g flag enables call-graph profiling. This causes to profiler to pay attention to which functions called which.
This can be a slightly more intuitive profiling view, as the leftmost column is now the percentage of time that this
function and all its children ran. I find this view makes finding the path of functions called to get to the time-
consuming function easier. In C programs, main will always sort to the top as 100% of your code runs inside of
main. As a thought exercise, what code executes outside of main in C++7?

In this example from my machine, we can see that the parent function takes 65% of the time, with 8% of that
coming from code parent itself, and 42 + 15% coming from child functions:

+ 99.99% 0.00% main main [.] main

+ 99.99% 0.00% main libc-2.23.s0 [.] __libc_start_main
+ 99.99% 0.00% main [unknown] [.] 0x07be258d4c544155
+ 64.51% 7.90% main main [.] parent

+ 42.00% 41.77% main main [.] child2

+ 34.86% 34.49% main main [.] no_children

+ 15.13% 15.02% main main [.] childl

(There is no question you have to answer in section 1.1)

IThe perf profiling tools only work on Linux. You’ll need a Linux environment (like your VM) for this assignment. If you primarily
develop on a mac, XCode ships with a tool called Instruments that can be used to profile that may be worth exploring on your own.

C4CS - F’17 2/3 Revision 1.0

https://gitlab.eecs.umich.edu/ppannuto/c4cs-f16-profiling

Select the right page in Gradescope or we will not grade the question!

2 Trying out Static Analysis

Recall from the debugging homework earlier this semester, we had some buggy code that was trying to compute
prime numbers.

git clone https://github.com/c4cs/debugging-basics
git checkout gdb-debug-1 # The first bug
git checkout valgrind-debug # The last bug

Try running our static analysis tools on these two branches.

Does cppcheck find the first or last bug? Does scan-build find either bug?

2.1 On your own code!

Run the static analysis tools on current or past code you've written. Recall that by default, copcheck does not
enable all checks (check out the lecture slide if you’ve forgotten).

Copy one warning or error reported here:?

Does this warning or error impact the correctness of your program? Why or why not?

2In the unlikely case that no code you’ve ever written produces any warnings, write a small program that generates a message and
use that here.

C4CS - F’17 3/3 Revision 1.0

	Exploring ProfilingThe perf profiling tools only work on Linux. You'll need a Linux environment (like your VM) for this assignment. If you primarily develop on a mac, XCode ships with a tool called Instruments that can be used to profile that may be worth exploring on your own.
	Call-Graph Profiling

	Trying out Static Analysis
	On your own code!

