
Before we begin, update your VM...
Ensure all local packages are up to date

FIRST SET A CHECKPOINT FOR YOUR VM
sudo apt-get update

Upgrade/Install some packages
sudo apt-get upgrade -y gdb

sudo apt-get install -y python3-pip

pip3 install --upgrade pip

1 / 24

Tips and Tricks Update
Edit your ~/.ssh/config to contain the following (works on MacOS, Linux,
VM, and WSL)

CAEN

Host caen login.engin.umich.edu

 HostName login.engin.umich.edu

 User mmdarden # Use your own uniqname

 ControlMaster auto

 ControlPath ~/.ssh/_%r@%h:%p

 ControlPersist 43200

Host mmd # Use your own initials or fave shortcut

 HostName oncampus-course.engin.umich.edu

 User mmdarden # Use your own uniqname

2 / 24

Tips and Tricks Update
When connecting to CAEN (with ssh caen)

First login requires password and DUO
Subsequent logins connect instantly (for 12 hours, or until...)
When the multiplexing expires or is broken (rules unknown)
Works for everything that uses ssh (commands, sessions, 3rd party
software, etc.)
2 useful commands

ssh -O check caen

ssh -O stop caen

Also, look for the file ~/.ssh/_mmdarden@login.eecs.umich.edu:22

3 / 24

TTU++
Connect your local dev environment to CAEN

Use rsync and a "Post-build script"
EECS 281 example: [https://gitlab.eecs.umich.edu/eecs281/makefile]

Look at $(REMOTE_BASEDIR)
Look at $(REMOTE_PATH)
Look at target sync2caen

Xcode example:
Edit Scheme...
Add a "Build Post-action"
Name: "Sync to CAEN"
Shell: /bin/bash
Provide build settings from: <current scheme>
Add the following script

Auto upload from Xcode to CAEN

make -C "${SRCROOT}" sync2caen > "${SRCROOT}/rsync.log"

open "${SRCROOT}/rsync.log"

Check on CAEN in ~/$(REMOTE_PATH)
Sync happens after every successful build!

4 / 24

https://gitlab.eecs.umich.edu/eecs281/makefile

5 / 24

Debuggers

> Pat Pannuto / Marcus Darden 6 / 24

http://creativecommons.org/licenses/by/4.0/
http://patpannuto.com/

What Does gdb Do?
Yes

Start your program (with options and arguments)
Stop your program
Allow you to see into registers and memory
Allow you to change values manually during execution

7 / 24

What Does gdb Do?
Yes

Start your program (with options and arguments)
Stop your program
Allow you to see into registers and memory
Allow you to change values manually during execution

No
MAGIC

8 / 24

How Do I gdb?
To debug a program with gdb, simply put gdb in front of the program, i.e.:

9 / 24

How Do I gdb?
To debug a program with gdb, simply put gdb in front of the program, i.e.:

> ./prime # running normally

> gdb ./prime # debugging the program with gdb

10 / 24

How Do I gdb?
To debug a program with gdb, simply put gdb in front of the program, i.e.:

> ./prime # running normally

> gdb ./prime # debugging the program with gdb

One annoying gotcha shows up if the program to debug takes any options. The
simple prime program does not, but if it did:

> ./prime --imaginary-option # running normally

> gdb ./prime --imaginary-option # will not work

gdb: unrecognized option '--imaginary-option'

> gdb --args ./prime --imaginary-option # gdb will ignore everything after --a

rgs

11 / 24

GDB's Text User Interface
It's a CLI program, get over it!
Nope... Beast Mode... GDB TUI

At launch with --tui
After launch with C-x 1

12 / 24

GDB's Text User Interface
It's a CLI program, get over it!
Nope... Beast Mode... GDB TUI

At launch with --tui
After launch with C-x 1

GDB TUI Key Bindings (partial)
Binding Action
C-x a Enter/exit TUI
C-x 1 Change TUI layout?
C-x 2 Change TUI layout
C-x o Switch window focus
C-x s Single Key mode
C-l Refresh screen
C-p , C-n , C-b , C-f Readline navigation (Emacs FTW!)
--------- --

13 / 24

GDB TUI Single Key Mode
This is truly GDB Beast Mode... on steroids!

Key Action
c continue
d down
f finish
n next
q exit the Single Key mode
r run
s step
u up
v info locals
w where
--- ------------------------

14 / 24

gdb Commands
run

Starting gdb will not run your program by default. You must use the run
command to begin execution.
Using run will start your program with the options originally specified, or
you can pass new options with run .

(gdb) run --different-option

If your project is recompiled, each run will automatically reload the new
version. Debugging is easier if you don't quit gdb, but leave it running in a
separate terminal.

15 / 24

#include <stdio.h>

int subtract (int a, int b) { return a - b; }

int divide (int a, int* b) { return a / *b; }

int do_math (int x, int y, int z) {

 int temp = subtract(x, y);

 temp = divide(z, &temp);

 return temp;

}

int main () {

 int temp;

 temp = do_math(10, 10, 20);

 printf("Result: %d\n", temp);

 return 0;

}

Function call stack
(growing to the right)

main

main -> do_math

main -> do_math ->
subtract

main -> do_math

main -> do_math ->
divide

gdb Commands
backtrace , up , down , frame , print

While your program is running, it has a function call stack that is built up
with frames that hold parameters, locals, and register information for
each invocation. Consider math.c:

16 / 24

gdb Commands
list , break , continue , step , next , set

Look at your source with list or list <function>

17 / 24

gdb Commands
list , break , continue , step , next , set

Look at your source with list or list <function>

Stop and start your program with break and continue

18 / 24

gdb Commands
list , break , continue , step , next , set

Look at your source with list or list <function>

Stop and start your program with break and continue

Take things at your own pace with step (into) and next

19 / 24

gdb Commands
list , break , continue , step , next , set

Look at your source with list or list <function>

Stop and start your program with break and continue

Take things at your own pace with step (into) and next

Make a change to variables and registers with set

20 / 24

More on breakpoints
Generally specified by filename:linenumber
Will also work in context
List all current breakpoints with info breakpoints
Remove with delete <number> or disable <number> until later
Skip over working code with breakpoints on either side and continue

21 / 24

GDB Does Python!!
Access to GDB internals
Variables, functions, etc.
Inline, short entry, and script
A pretty printer

class ObjectPrinter:

 '''Pretty print an Object'''

 def __init__(self, val):

 self.val = val

 def to_string(self):

 '''Change this to reflect real properties from the object'''

 return self.val

 def lookup_type(val):

 if val == 'Object':

 return ObjectPrinter(val)

 def display_hint(self):

 return 'Object'

gdb.pretty_printers.append(lookup_type)
22 / 24

The New Hotness... gdbgui
pip3 install gdbgui --upgrade

Rerun the previous debug session
Start a new debug session

23 / 24

Open Problems with Debugging
Look at inf.c

24 / 24

