Debugging in Docker

Pat Pannuto / Amrit Hariharan 1/24

http://creativecommons.org/licenses/by/4.0/
http://patpannuto.com/

Current Debugging Workflow

1. Write code
2. Compile
3. Run in GDB/Valgrind

2 /24

Current Debugging Workflow

1. Write code
2. Compile
3. Run in GDB/Valgrind

Issues?

e Different version of g++/valgrind from CAEN
e Can't use Valgrind/GDB if you're on mac/windows

3/24

Alternatives?

 Go to a CAEN computer
e SSH into CAEN

e Virtual Machine

e Docker!

4/24

What is Docker?

e A form of virtualisation
e Containerise everything!

5/24

But That's Just a VM?

e It doesn't create the entire OS
« Allimages used shared resources

6/24

But That's Just a VM?

e It doesn't create the entire OS
« Allimages used shared resources

Which is Better?

Docker VM's
e Is much quicker to start o Full isolation
e Hella fast e You know how it works

e Open source :D
e Almost 0 overhead

7124

Getting Started

 Download Docker (if you haven't already)
e Start the Docker client
e docker pull alpine

e docker run alpine

8/24

https://www.docker.com/get-docker

Getting Started

 Download Docker (if you haven't already)
Start the Docker client

docker pull alpine

docker run alpine

Why didn't that do anything?

o You didn't give it any commands
o docker run -it alpine to open an interactive shell

9/24

https://www.docker.com/get-docker

What We Need

e Alinux image (Ubuntu 17.10)
e Valgrind, GDB, etc.

10/ 24

https://hub.docker.com/_/ubuntu/

What We Need

e Alinux image (Ubuntu 17.10)
e Valgrind, GDB, etc.

Setting up an Image

docker pull ubuntu:artful

docker run -it alpine

apt-get update

apt-get install g++ valgrind make

11/24

https://hub.docker.com/_/ubuntu/

Building the Docker Way

e Use a Dockerfile
o This contains all the commands a user would call on the command
line to assemble an image
o Makes it easy to share images, since you only need to share a simple
text file

Build a simple ubuntu image with vim installed
FROM ubuntu:artful

RUN apt-get update

RUN apt-get install -y vim

CMD ["bash"]

S docker build .

12 /24

Accessing Your Files

We hate two options:

e Copy over files
o ADD . /DOCKER/PATH
e Mount directory
o docker run -it -v "$(pwd):/DOCKER/PATH

13 /24

Time to Build a Debugging Container

14/ 24

The Dockerfile
Objective

e Build an image running ubuntu that has all the tools we need

15/24

The Dockerfile

Get the linux distro we want

Using Ubuntu 17:01 (artful)
FROM ubuntu:artful

16 /24

The Dockerfile

Install everything we need

RUN
RUN
RUN
RUN
RUN
RUN

apt-
apt-
apt-
apt-
apt-
apt-

get
get
get
get
get
get

update

install -
install -
install -
install -
install -

< KK KK K K

g++
gcc

make
valgrind
vim

17 /24

The Dockerfile

Get it ready to be run

Set starting directory to /prog
RUN mkdir /prog
WORKDIR /prog

Run bash
CMD ["bash"]

18 /24

The Dockerfile

Using Ubuntu 17.10
FROM ubuntu:artful

RUN apt-get update

RUN apt-get install -y g++

RUN apt-get install -y gcc

RUN apt-get install -y make

RUN apt-get install -y valgrind
RUN apt-get install -y vim

Set starting directory to home
RUN mkdir /prog
WORKDIR /prog

CMD ["bash"]

19/24

Build It

e If you're in the same directory as the Dockerfile
docker build -t docker-debugger .

e Ifnot

docker build -f /PATH/TO/Dockerfile -t docker-debugger

20/ 24

Running It

e Run the most recent 'docker-debugger' image

Run it
Mount the current directory to /prog
docker run -it --rm --privileged \

-v "$(pwd):/prog" docker-debugger:latest

21/24

Running It

What are all those other flags??

e -it:open an interactive shell

e --rm:remove the container on exit

e --privileged: give it permissions required for gdb/valgrind

e -v "LOCAL_PATH:CONTAINER_PATH" : Mount LOCAL_PATH on your container at
CONTAINER_PATH

22 /24

Is That It?

« This is a really simple use case
» Deploy a website anywhere
o Have loads of images + a load balancer!

23 /24

Is That It?

Container Orchestration

 Managing loads and loads of running containers

« Scaling as appropriate by adding or removing containers

e Distributing load between the containers

e Launching new containers on different machines if something fails

24 /24

