Debuggers

Pat Pannuto / Marcus Darden 1/18


http://creativecommons.org/licenses/by/4.0/
http://patpannuto.com/

What Does gdb Do?

Yes

e Start your program (with options and arguments)

e Stop your program
e Allow you to see into registers and memory
e Allow you to change values manually during execution

2/18




What Does gdb Do?

Yes

e Start your program (with options and arguments)

e Stop your program
e Allow you to see into registers and memory
e Allow you to change values manually during execution

No

e MAGIC

3/18




How Do | gdb?

To debug a program with gdb, simply put gdb in front of the program, i.e.:

4/18



How Do | gdb?

To debug a program with gdb, simply put gdb in front of the program, i.e.:

> ./prime # running normally
> gdb ./prime # debugging the program with gdb

5/18



How Do | gdb?

To debug a program with gdb, simply put gdb in front of the program, i.e.:

> ./prime # running normally
> gdb ./prime # debugging the program with gdb

One annoying gotcha shows up if the program to debug takes any options.
The simple prime program does not, but if it did:

> ./prime --imaginary-option # running normally
> gdb ./prime --imaginary-option # will not work

gdb: unrecognized option '--imaginary-option'
> gdb --args ./prime --imaginary-option # gdb will ignore everything after --a

rgs

6/ 18



GDB's Text User Interface

o It's a CLI program, get over it!
e Nope... Beast Mode... GDB TUI
o Atlaunch with --tui
o After launch with c-x 1

7/18



GDB's Text User Interface

e It'sa CLI program, get over it!
e Nope... Beast Mode... GDB TUI
o At launch with --tui
o After launch with c-x 1

GDB TUI Key Bindings (partial)

Binding Action

C-x a Enter/exit TUI

C-x 1 Change TUI layout?

C-x 2 Change TUI layout

C-X 0 Switch window focus

C-Xx s Single Key mode

C-1 Refresh screen

C-p, C-n, C-b, C-f Readline navigation (Emacs FTW!)




GDB TUI Single Key Mode

e This is truly GDB Beast Mode... on steroids!

Action
continue
down
finish
next

exit the Single Key mode
run

step

up

info locals
where

~
®
<

S <2 ©»® =5 oo

9/18




gdb Commands

run

o Starting gdb will not run your program by default. You must use the run

command to begin execution.
e Using run will start your program with the options originally specified, or

you can pass new options with run.
(gdb) run --different-option

o If your project is recompiled, each run will automatically reload the new
version. Debugging is easier if you don't quit gdb, but leave it running in a

separate terminal.



gdb Commands

backtrace, up, down, frame, print

e While your program is running, it has a function call stack that is built up
with frames that hold parameters, locals, and register information for

each invocation. Consider math.c:

#include <stdio.h>
int subtract (int a, int b) { return a - b; }
int divide (int a, int* b) { return a / *b; }
int do_math (int x, int y, int z) {
int temp = subtract(x, y);
temp = divide(z, &temp);
return temp;
}
int main () {
int temp;
temp = do _math(10, 10, 20);
printf("Result: %d\n", temp);
return 0;

Function call stack
(growing to the right)

main
main -> do_math

main -> do_math ->
subtract

main -> do_math

main -> do_math ->
divide



gdb Commands

list, break, continue, step, next, set

e Look at your source with 1list or list <function>

12/18



gdb Commands

list, break, continue, step, next, set
e Look at your source with 1list or list <function>

e Stop and start your program with break and continue

13/18



gdb Commands

list, break, continue, step, next, set
e Look at your source with 1list or list <function>
e Stop and start your program with break and continue

e Take things at your own pace with step (into) and next

14/18



gdb Commands

list, break, continue, step, next, set
e Look at your source with 1list or list <function>
e Stop and start your program with break and continue
e Take things at your own pace with step (into) and next

e Make a change to variables and registers with set

15/18



More on breakpoints

o Generally specified by filename:linenumber

e Will also work in context

o List all current breakpoints with info breakpoints

e Remove with delete <number> Or disable <number> until later

e Skip over working code with breakpoints on either side and continue

16/ 18



GDB Does Python!!

e Access to GDB internals

e Variables, functions, etc.

e Inline, short entry, and script
e A pretty printer

class ObjectPrinter:
'"'"Pretty print an Object

def __init__(self, val):
self.val = val

def to_string(self):
'''Change this to reflect real properties from the object'''
return self.val

def lookup_type(val):
if val == 'Object':
return ObjectPrinter(val)

def display_hint(self):
return 'Object’

gdb.pretty _printers.append(lookup_type)



Open Problems with Debugging

Look at inf.c

18/18



