
Advanced Homework 2

Shell Vanity or Utility?

Assigned: Friday, January 15, 11:00AM

Due: Before the end of the final office hours this week (Thursday, ∼8:15PM)

Submission Instructions

To receive credit for this assignment you will need to stop by someone’s office hours, demo your running code, and
answer some questions.

1 Pretty PS1

Open a new terminal and try the following commands in order:

1 echo -e "\\033[44;3;70;38;5;214m"
2 <hit enter again>
3 PS1="Hello World -- "
4 echo -e "\\033[44;3;70;38;5;214m"
5 pwd
6 ls
7 pwd
8 echo -e "\\033[44;3;70;38;5;214m"
9 ls --color=none

10 pwd
11 reset

12 pwd
13 bash --norc
14 echo -e "\\033[44;3;70;38;5;214m"
15 ls
16 pwd
17 ls --color=auto
18 pwd
19 exit
20 PS1="\\033[44;3;70;38;5;214mHello Again -- "
21 ls

What happened to your terminal as you ran these commands? Play around with some other forms of PS1 and other
colors, see what happens. Why does calling ls sometimes reset things?

Create a custom PS1 for yourself. Look into some of the options for PS1, you will need to explain why you added
the options you did and decided against options you didn’t choose.

Extend your PS1 by writing a bash function the changes your prompt in a way that is not built-in to bash. Some
examples: Include the current branch in the prompt if you are currently in a git repository. Change the color if you
are currently in a shared directory (i.e. in a Dropbox folder). Change the color if the current directory will not be
saved across a reboot (i.e. if you are you are somewhere in the /tmp directory).

Submission checkoff:

� Explain what PS1 does

� Explain what you did to customize PS1 and why you chose the customizations that you did.

� Explain how your custom function works.

� Explain what the PS2 variable controls. Change PS2 from the default and show an example.

� Type set -x. Then type ls. Explain all of the output.

C4CS – W’16 1 / 2 Revision 1.0

2 UNDERSTANDING TAB COMPLETIONS

2 Understanding tab completions

This corner of the world is a little rougher and more complex. The goal of this task is to show you how you can use
and even do some basic hacking on a tool that you don’t completely understand. You do not need to develop a deep
and complete understanding of bash completions for this task, you simply need to generate something that works.

Open a new terminal and try typing the following (note <tab> means press the tab key):

1 p<tab><tab>
2 y
3 <ctrl-c>
4 pi<tab><tab>
5 pin<tab><tab>
6 ping<tab><tab>
7 ping <tab><tab>
8 PATH=<enter>
9 p<tab><tab>

In addition to finding programs, tab completions can help you to use a program correctly by hinting at what
arguments a program accepts, try this:

10 # Open a new terminal (or manually set your PATH correctly again)
11 ping <tab><tab>
12 ping -<tab><tab>
13 ping -I<tab><tab>
14 ping -Q<tab><tab>
15 ping -Q 0 <tab><tab>

Today, most programs include tab completion support, but this is a remarkably manual process. Check out the
contents of the /usr/share/bash-completion/completions/ directory.

Now take a look at /usr/share/bash-completion/completions/ping. There’s a lot going on in this exam-
ple, but try to see if you can understand some of how the completions are working. What do you think the result of
ping -T <tab><tab> will be?

(Hint: || in bash means “if the previous thing failed, do the next thing”. What’s the output of echo $OSTYPE?
Will that equality pass or fail?)

Writing our own completion file

Completions are really nice as a user. Find a project you’ve written for a previous or current EECS class. What
happens if you try to tab-complete that project (e.g. ./project1 <tab><tab>)?

Let’s try to make that more useful. Find a current or previous project that takes at least two options (if you don’t
have one, write a trivial program, such as mycalc [--add,--subtract] NUM1 NUM2). Be sure your project
executable is named something unique (e.g. there is already a built-in calc program).

Write a custom completion file for your program that completes its arguments. Install your completion such that it
works whenever you open a new terminal.

For this part, I recommend not starting from scratch. Find a simple completion file1 to start from, hack it, mess with
it, whatever until it does what you want.

Submission checkoff:

� Why is the list of tab completions different between lines 1 and 9?

� What is the default tab completion behavoir for a program if no custom completion function has been written?

� Demonstrate your custom completion working.

� Explain what you had to do to “install” your completion file

� Explain what you had to do to get your completion file working

1 Preview of coming attractions, try wc -l /usr/share/bash-completion/completions/* | sort -n | head

C4CS – W’16 2 / 2 Revision 1.0

	Pretty PS1
	Understanding tab completions

